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21010-5423. However, the Defense Technical Information Center and the National
Technical Information Service are authorized to reproduce the document for U.S
Government purposes.
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BACK-PROPAGATION NETWORK
FOR ANALOG SIGNAL SEPARATION IN HIGH NOISE ENVIRONMENTS

1. INTRODUCTION

Chromatography and photospectrometry are techniques commonly used to identify the
composition of mixtures. These spectra are comprised of an additive combination of the individual
spectrum and often the individual spectrum overlap and interfere with one another thus
necessitating the need for some signal separation algorithm. Traditionally, principal components
regression (PCR) is used to perform this task1 . Furthermore, the concentration of the component
in question may be so low that it is near the detection limit of the apparatus in use, thus the signal
may be very noisy. Such a situation occurs in biological and chemical weapons detection because
one wishes to alarm at the earliest possible time, i.e., as soon as the concentration reaches the
detection limit of the warning device. Another inherent problem with biological and chemical
weapons detection is that the battlefield conditions are constantly changing and therefore the
background noise will also change. For these reasons it would be advantageous to have an
adaptable detection system that is capable of performing in high noise environments.

Other researchers have successfully applied artificial neural networks to component
separation problems using only two components and little added noise2 . In this paper the back-
propagation (BP) network is examined as a possible alternative approach to PCR and prefiltered
linear regression (PLR) for separation of up to four components in a high noise environment.

2. BACKGROUND

2.1 Linear Re n

In this paper scalars will be denoted by italic lowercase letters, vectors by bold lowercase
letters, matrices by bold uppercase letters, and the transpose by a superscript T. Linear regression
assumes

D=CST+E
where D, the data matrix, is dimensioned i X j, S, the sensitivity matrix, is dimensioned j X k,
and C, the matrix of concentrations, is dimensioned i X k. E is a matrix of response residuals.
The sensitivity matrix can be estimated by

S' = DTC(CTC)"l
where the relationship between D and C is known. This set will be referred to as the training set.
The set C' and D', where C' is the unknown concentrations of the data D', will be referred to as
the test set. The unknown concentrations C' can then be estimated using

C" = D "Ts -(S "TS ')- 1

1 Kowalski, B. and Seasholtz, M., "Recent Developments in Multivariate Calibration," Journal
of Chemometrics Vol. 5, pp 129-145 (May 1991).

2 Long, J., Gregoriou, V., and Gemperline, P., "Spectroscopic Calibration and Quantitation
Using Artificial Neural Networks," Analytical Chemistry Vol. 62, no. 17, pp 1791-1797 (Sept.
1990).
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2.2 Principal Components Regression

PCR uses the same equations as linear regression except it replaces D and D" with N and
N" given by

N =(RTDT)T
N "= (RTD.T)T

where R is the first n eigenvectors of DTD and will be referred to as the principal components.
The number of principal components, n, is determined by the size of the relative eigenvalues, i.e.,
the larger the eigenvalue the more important the relative eigenvector is. N and N" are dimensioned
n X i and R is dimensioned j X n. The step of eliminating everything other than the principal
components acts to keep only the significant information in the data and is somewhat analogous to
spectral filtering.

2.3 The Back-Propagation Network

The BP network described below uses the generalized delta rule learning and the layout of a
typical BP network and is consistent with the equations and layout used for this study3 . It should
be noted, however, that there are many variations on the standard algorithm and detailed
descriptions of these modifications are available in the literature4' .

A BP network typically has an input, output, and at least one hidden layer. It usually also
has a bias element which outputs to all the elements in the hidden and output layers. Normally the
input and hidden layer and the hidden and output layer are fully interconnected, meaning all the
processing elements (PE's) of one layer are connected to all the PE's of the other layer. All the
connections between the PE's contain weights that act as gains along those paths. Each PE sums
all its inputs, modifies it by some transfer function, and outputs the resulting value. The network
learns by repetitiously presenting the input/output (I/O) pairs contained within the training set,
forward propagating the inputs through to the output layer, and modifying the connection weights
by back propagating a modified error function which is based on the result of the forward
propagated input compared with the output portion of the I/O pair. The forward propagation step
is accomplished by

xj[s] = F{ Yi (wji[s] xi[s-1] )}

where

x.js] = output of the jth PE in layer s
Jw.i[s] = connection weight between the ith PE in layer (s-I) and the jth PE in layer s

F" }) = the PE's transfer function

3 Jones, W. and Hoskins, J., "Back-Propagation, A Generalized Delta Learning Rule," D
Magazine (Oct. 1987).

4 McClelland, J. and Rumelhart, D., Explorations in Parallel Distributed Processing, The MIT
Press, Cambridge, Mass. (1988).

5 Wasserman, P., Neural Computing. Theory and Practice, Van Nostrand Reinhold, New York,
New York (1989).
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Some of the more common transfer functions are

Sigmoid F z) = (1.0 + e'gZ)"1

Hyperbolic Tangent F(z) = (egz - e-gz) / (egz + e-gz)
Linear F(z) = z

where g is called the gain. Once the input has been forward propagated to the output layer an error
term is generated and back propagated using

ej[s] = F( 7,1 (wji[s] xi[s-1] )) Fk (ek[s+l] Wkj[S+l] )

where
e [s] = error term for the jth PE in layer s
P({.) = the first derivative of F(*)

and the error term for the output layer is given by

ejtso] = FlV_(wji[So-ll xi[so-l])} (dj- xj[Sol )

where d. = the desired output of the jth PE given by the present I/0 pair. After the error term has
been calculated the given connection weight is modified by

Awji[s] = c ej[s] xi[s-1] + m Aw'ji[s]

where

Awii[s] = delta weight between the ith PE in layer (s-i) and the jth PE in layer s
Awli[s] = previous delta weight for the given connection and layer
c = learning coefficient
m = momentum term

The above steps will be repeated until the designer feels that the network is sufficiently well
trained. Usually the training pairs are presented to the network in a random fashion to prevent it
from overlearning some arbitrary patterns resulting from the location of the training pairs with
respect to one another. Once the network is trained it is normally tested with a different data set
called the test set to better evaluate the models generality.

3. EXPERIMENTAL SETUP

3.1 Generation of the Data

The data was comprised of an additive combination of the individual spectrum. The
individual spectrum were generated using

Yi = e"(xm)A2 / sx
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where

m = the peak location
s = skewing factor

A piot of the individual spectrum for the four component mixture can be seen in Figure 1. The
individual spectrum were represented by 45 points each and were combined into an input spectrum
using

Yj-=-2icijYi j=l, 2, ... ,nk

where

Y. = the jth input spectrum
cij = concentration of component Yi for the jth input spectrum
nk = number of possible combinations of concentrations for the kth matrix

and the cij's were determined by

Y'icij =1 j=l, 2 ,...,nk

and all possible combinations of the incremental concentrations were generated to make the input
matrix. The training set concentrations for the two, three, and four component mixtures were
incremented at 10, 20, and 25 percents intervals respectively. The test set concentrations were
incremented at 1, 1, and 2.percent intervals respectively. Each training matrix was the replicated
10 times to make the final size of the input training matrix 45 by lOnk and each test matrix was
ieplicated 5 times to make the final size of the input test matrix 45 by 5nk For each input matrix a
noise matrix consisting of uniformly distributed random variables between 0 and 0.3 was
generated and added to the input matrix. Finally, to each Y was added a randomly chosen
constant between 0 and 1. Figure 2 shows the first tenth of the resulting training set for the four
component input matrix.

3.2 Filtering Methodology

No prefiltering was performed for the BP network. For PCR and PLR the random dc was
removed by subtracting the average of the first and last three points. For PLR further filtering was
accomplished by multiplying the spectral domain by a square function which equaled one between
-p and p and was zero elsewhere. The cutoff frequency, p, for this low pass filter was optimally
chosen by comparing the filter output with the input matrix prior to the addition of the noise.

10
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Figure 2. (a) Four component matrix without the noise added.

(b) Four component matrix with the noise added.

3.3 Principal Components Regression

The number of principal components was determined to be q where q equals the number of
components in the mixture. This was determined by plotting the eigenvalues as is shown in Figure
3 for the four component mixture. The eigenvalues dropped off very rapidly and remained fairly
constant after the qth eigenvalue.
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Figure 3. A log plot of the eigenvalues for the four component input matrix.

3.4 Back-Propagation Network Setup

The BP network had a bias PE, 45 input PE's, q hidden PE's, and q-1 output PE's where
q equals the number of components in the mixture. The number of hidden PE's was determined
by starting at a large number and progressively removing inactive PE's. Both q and q-1 output
PE's were tried initially and the results for q- 1 were slightly better thus the remaining experiments
were performed with this number. The hidden PE's had sigmoid transfer functions with gain set
to one and the input and output PE's had linear transfer functions. Sigmoid transfer functions on
the output PE's tended to warp the output and resulted in greater error. The network was trained
for the two, three, and four component mixtures with 50,000, 60,000, and 70,000 iterations
respectively.

4. RESULTS AND DISCUSSION

4.1 Comparison Between Methodologies

The results are given in terms of the error averaged over the entire set of training pairs and
components and is shown in Table I. In all cases the BP network outperformed PCR and PLR.
The error for PCR and PLR was between 30 and 65 percent greater than that for the BP network.
The difference between PCR and PLR as compared with the BP network decreased as the number
of components increased. This occurred because the error for the BP network as a function of the
number of components had a greater slope than it did for the other methods. To understand this
one must first explore the two primary sources of error that vary with the number of components.
The first source of error is caused by the degree of signal distortion due to the heavily overlapped
nature of the spectra in question. This error increases equally for all three methods and does not
account for the apparent discrepancy. The other primary source of error that increases as a
function of the number of components is exclusive to the BP network and is caused by the fact that
an increase in the number of components results in a linearly related increase in the number of
weights. This makes the weight space more complex and thus the gradient search like
minimization algorithm of the BP network will have greater difficulty finding the global minima
and can easily get stuck in local minima. This does not occur in PCR because the
eigenvector/eigenvalue search is performed in 45 by 45 space for all cases.
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TABLE 1 - RESULTS OF THE COMPARISONS BETWEEN METHODS

Method Average Percent Error

Two Component Three Component Four Component

BP Network 2.365 3.530 4.448

POR 3.906 5.104 5.886

PLR 3.639 4.810 5.744

4.2 Low Noise High Noise Comparison for the Back-Propagation Network

It would be a useful characteristic if one could train the BP network with a high noise worst
case scenario and recall with input test sets that varied from little noise up to the worst case. In
order to determine whether the BP network could manage this task I proceeded to recall the
network which had been previously trained on the thirty percent noise data with a new data set
containing only ten percent noise. The results are shown in Table II. As expected the average
error decreased significantly with the new data set.

TABLE 2 - RESULTS OF THE COMPARISON BETWEEN THE LOW AND HIGH NOISE
TEST SETS FOR THE BACK-PROPAGATION NETWORK

Test Set Error Average Percent Error
Two Component Three Component Four Component

Ten Percent 1.503 1.503 1.906

Thirty Percent 2.365 3.530 4.448

5. CONCLUSIONS

Using BP networks for signal separation seems to have several advantages over classical
linear regression based techniques. The apparent ability of the network to generalize would seem to
indicate that it is possible to initially train the network with the worst case scenario, thus allowing it
to generalize about the information content, and then recall with data that can vary anywhere from
perfect up to the worst case. The network is also not restricted to purely linear relationships in the
data. In this paper only linear relationships existed but if data containing some nonlinearities was
used the BP network should fare even better in comparison with the linear techniques. Finally,
using a neural network type approach should allow the network to constantly update itself as the
background noise varies, thus providing some degree of adaptability.
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